The recharging of electric vehicles will undoubtedly entail an increase in demand. Traditionally, efforts have been made to shift their recharging to off-peak hours of the consumption curve, where energy demand is lower, typically during nighttime hours. However, the introduction of photovoltaic solar energy presents a new scenario to consider when synchronizing generation and demand curves. High-generation surpluses are expected during the central day hours, due to the significant contribution of this generation; these surpluses could be utilized for electric vehicle recharging. Hence, these demand-side management analyses present important challenges for electricity systems and markets. This research explores this overdemand avenue and presents a method for determining the ideal recharge curve of the electric vehicle. Consequently, with this objective of maximizing photovoltaic generation to cover as much of the foreseeable demand for electric vehicles as possible in future scenarios of the electrification of the economy, the six fundamental electric vehicle charging profiles have been analyzed. A practical scenario for 2040 is projected for the Canary Islands, estimating the potential levels of demand-side management and associated coverage. The coverage ranges from less than 20% to over 40%, considering the absence of demand-side management measures and the maximum displacement achievable through such measures.