The performance of a latent heat storage unit comprised of phase change material (PCM) enclosed in a finned-tube heat exchanger was evaluated experimentally and theoretically to determine its viability to condition a space during summer. The internal and external design conditions of a typical building were selected and analyzed to determine the type of PCM, and the phase change temperature required for space cooling. Subsequently, a PCM of Plus-ice A17 was selected and charged into a small-scale finned-tube heat exchanger. Extensive measurements were conducted on the PCM heat exchanger at different operating conditions. Meanwhile, a three-dimensional computational fluid dynamics model for the PCM heat exchanger was developed and validated with the experimental measurements and thus simulated. When the airflow velocity increases from 1.3 m/s to 6 m/s, the phase change periods decrease by 25% and 13% for the PCM charging and discharging processes respectively. When the PCM thermal conductivity increases from 1 W/(m·K) to 8 W/(m·K), the phase change periods reduce by 36.3% and 47.7% for the PCM charging and discharging processes respectively. In addition, for the same increased range of PCM thermal conductivity, the charging energy efficiency increases by 16.3%, and the discharging energy ratio drops by 7.1%.