Abstract

This paper presents a model-based predictive control strategy to optimize the operations of phase change material (PCM) ceiling panels coupled with a multi-stage air-source heat pump. A three-stage prototype heat pump unit has been built and tested in the laboratory, with the low and medium stages designed for space heating/cooling and the high compression stage dedicated to charging of the PCM energy storage. To facilitate optimal control of the integrated heat pump system, a mixed-integer linear programming formulation is derived through linearization of the heat pump model and a mixed-integer reformulation of the PCM dynamic governing equations. A predictive control strategy is synthesized based on the resultant control formulation and implemented in a receding horizon scheme that optimizes the PCM charging and the zone temperature schedules simultaneously to leverage both the passive (associated with building construction materials) and active (PCM) storage capacities of a building. The control strategy has been tested along with three benchmarking control scenarios using a co-simulation platform for a prototypical detached house in Atlanta, GA. Test results showed that application of the proposed control strategy to the PCM-integrated heat pump could provide 27.1% electricity cost savings while a fine tuned rule-based control strategy could achieve cost savings of 20.4%, compared to a baseline case without PCM storage, under a time-of-use rate tariff.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call