ABSTRACT Due to different financial restrictions, extending the existing power grid to remote locations like desert camps is not practically possible, forcing the camp owner to utilize expensive and ecologically hazardous diesel generators (DiG). In this regard, renewable sources based hybrid microgrid could be a viable approach toward reliable and sustainable electrification of these desert camps. However, optimum designing and proper energy management of such a system can be a challenging task. In these terms, this study presents a novel model based on the multi-objective PSO (MOPSO) algorithm for optimal design and energy management of a hybrid microgrid employing solar photovoltaic (PV) and wind turbine (WT), battery, and DiG for electrification of Thar desert camp in Jaisalmer, India. To address techno-eco-environmental aspects, objectives such as Dump Energy (DE), Installation and Operation Cost (IOC), and Reduction of Pollutant Emission (RPE) are considered. The optimal configuration of PV, WT, battery, and DiG are determined based on the maximization of RPE and minimization of both DE and IOC. The proposed model is formulated taking into account the seasonal load variation of a typical camp and the stochastic behavior of renewable energy sources. Moreover, electric vehicles (EVs) charging facility for the tourists staying in these camps is also included while modeling the microgrid system. Furthermore, three distinct system configurations are carefully analyzed over a 10-year period based on technical, environmental and economic indicators. The optimum configuration obtained is the hybrid PV/WT/DiG/battery system with 62 kW PV, 76 kW WT, 350 kWh battery and a 117 kW DiG. According to simulation findings, this system has an operational cost of 323.7 × 104 $ and a pollutant emission of 2034.3 tons, which is 33.67% and 63.32% less than that of the DiG-only configuration, respectively. Moreover, as compared to PV/WT/DiG system, PV/WT/DiG/battery system can reduce dump energy by 81.40%, highlighting the necessity of battery for fully utilizing renewable energy. Overall, this analysis suggests that the utilization of renewable energy sources along with the battery is the optimal planning solution for the camp owner to maximize their potential benefits. Moreover, the proposed technique can be effectively used to optimally design hybrid renewable energy system for other remote locations.
Read full abstract