Arsenic contamination in groundwater threatens public health, particularly in small, low-income communities lacking affordable treatment solutions. This study investigated the field implementation of novel air cathode assisted iron electrocoagulation (ACAIE) technology for arsenic removal in Allensworth, California, where groundwater arsenic concentrations exceeded 250 µg/L. Over four months, a pilot-scale ACAIE system, operating at 600 L/h, consistently reduced arsenic levels to below the EPA’s maximum contaminant level of 10 µg/L. Laboratory experiments informed the optimization of charge dosage and flow rates, which were validated during field testing of the ACAIE 600 L/h system. The in-situ generation of hydrogen peroxide at the cathode speeded up the reaction kinetics, ensuring high arsenic removal efficiency while allowing high throughput, even with a compact reactor size. An economic analysis demonstrated a treatment cost of USD 0.02/L excluding labor, highlighting the system’s affordability compared to conventional methods. Adding labor costs increased the treatment cost to USD 0.09/L. The regeneration of air cathodes extended their operational life, addressing a key maintenance challenge, thus reducing the costs slightly. Intermittent challenges were encountered with filtration and secondary contaminant removal; these issues highlight opportunities for further operational improvements. Despite these challenges, ACAIE’s low operational complexity, scalability, and cost-effectiveness make it a promising solution for underserved small communities. These findings provide critical insights into deploying sustainable arsenic remediation technologies that are tailored to the needs of rural, low-resource communities.
Read full abstract