The conformational behavior of a single dipolar chain in a uniform electric field is investigated by molecular dynamics simulations. The dipolar chain is modeled as a backbone bead-on-spring chain of equally charged beads, each connected by a rigid spring with an oppositely charged side bead that can freely rotate around the backbone bead. In the strong coupling regime, when the dipolar chain is in the globular state due to a strong electrostatic correlational attraction, the application of an electric field causes the chain swelling and elongation along the field direction. In the weak coupling regime, a qualitatively new regime is found when the swollen dipolar chain shrinks along the field direction adopting flattened conformations due to the field-induced anisotropy of the chain rigidity and the head-to-tail attraction of the dipoles orienting along the field lines. A novel helical conformation is detected for low-polar media and strong electric fields. An increasing rigidity of the backbone chain leads to some stabilization of the helical conformation and the formation of double and triple helices as well as flat spread springs. Fine tuning of the interplay between dipolar and volume interactions by external electric fields induces re-orientation of rod-like dipolar chains in dilute solutions. The obtained results can provide new ways to control dipolar polymer conformations and design materials with responsive properties.
Read full abstract