A salicylic-acid (SA)-modified samarium-doped TiO2 complex (Sm-TiO2/SA) was synthesized via a sol-gel method followed by impregnation. A Raman Fourier transform IR and X-ray photoelectron spectroscopic study showed that SA (as an electron donor) forms a surface complex on the Sm-TiO2 surface through its phenolic/carboxylic functional groups. In the Sm-TiO2/SA complex, a ligand-to-metal charge transfer (LMCT) is active, inducing a marked red-shift in the absorption spectrum of TiO2, which extends to 550-600 nm. The synergetic effect between the LMCT process and the luminescent properties of the lanthanide ions (Sm3+) is discussed and supported by the photoluminescence spectra. Further photocatalytic experiments (under sunlight) and the study of the effect of different scavengers show the presence of competitive reactions between de-ethylation and cleavage of Rhodamine B (RhB) during its degradation. With the Sm-TiO2/SA complexes, the superoxide radical ion (O2 •-) is the main active species responsible for the N-de-ethylation pathway under sunlight irradiation. The cleavage of RhB by the hydroxyl radical (•OH) appears, instead, to dominate with the Sm-TiO2 photocatalysts.
Read full abstract