The role of the phenazine structure in the stabilization of charged states in polyaniline was studied by in situ electron spin resonance (ESR)-UV/vis-near-infrared (NIR) spectroelectrochemistry of polyaniline and the copolymers of aniline and a phenazine derivative (3,7-diamino-5-phenylphenazinium chloride, phenosafranine). It is shown that the copolymer can be prepared by electropolymerization, and its structure was confirmed by mass spectrometry and IR spectroscopy. The electrochemistry of polyaniline and its copolymer pointed to preferred stabilization of a polaron pair in the charged states at the initial charge transfer reaction instead of polarons that are formed by equilibrium reaction at higher electrode potentials. A second polaron pair is detected for higher doped states of the polymer films. A mechanism of the formation of charged states in polyaniline and their equilibrium is given. It is shown that in situ ESR-UV/vis-NIR spectroelectrochemistry is the method of choice to differentiate between polarons and polaron pairs in their potential-dependent formation. Thus, by this in situ spectroelectrochemical method the influence of phenazine structure on the formation of polarons in aniline polymers and copolymers can be followed.