Domain boundaries (DBs) in charge density wave (CDW) systems not only are important for understanding the mechanism of how CDW interplays with other quantum phases but also have potential for future CDW-based nanodevices. However, current research on DBs in CDW materials has been mainly limited to those between homochiral CDW domains, whereas DBs between heterochiral CDW domains, especially in the atomic layers, remain largely unexplored. Here, we have studied the geometric and electronic states of heterochiral DBs in single-layer and bilayer 1T-NbSe2 using scanning tunneling microscopy/spectroscopy. We observe the existence of diverse CDW configurations in a single heterochiral CDW DB with atomic resolution and reveal the corresponding electronic states. In addition, interlayer stacking further enriches the electronic properties of the DB. Our results offer deep insights into the relationship between the detailed CDW nanostructures and electronic behaviors, which has significant implications for DB engineering in strongly correlated CDW systems and related nanodevices.
Read full abstract