Low-frequency electronic noise in charge-density-wave van der Waals materials has been an important characteristic, providing information about the material quality, phase transitions, and collective current transport. However, the noise sources and mechanisms have not been completely understood, particularly for the materials with a non-fully gapped Fermi surface where the electrical current includes components from individual electrons and the sliding charge-density wave. We investigated noise in nanowires of quasi-one-dimensional NbSe3, focusing on a temperature range near the Pearls transition TP1 ∼ 145 K. The data analysis allowed us to separate the noise produced by the individual conduction electrons and the quantum condensate of the charge density waves before and after the onset of sliding. The noise as a function of temperature and electric bias reveals several intriguing peaks. We explained the observed features by the depinning threshold field, the creep and sliding of the charge density waves, and the possible existence of the hidden phases. It was found that the charge density wave condensate is particularly noisy at the moment of depinning. The noise of the collective current reduces with the increasing bias voltage in contrast to the noise of the individual electrons. Our results shed light on the behavior of the charge density wave quantum condensate and demonstrate the potential of noise spectroscopy for investigating the properties of low-dimensional quantum materials.