Abstract

We report on a Raman-scattering investigation of the charge density wave (CDW), quasi-two-dimensional rare-earth tritellurides $R{\text{Te}}_{3}$ ($R=\text{La}$, Ce, Pr, Nd, Sm, Gd, and Dy) at ambient pressure, and of ${\text{LaTe}}_{3}$ and ${\text{CeTe}}_{3}$ under externally applied pressure. The observed phonon peaks can be ascribed to the Raman-active modes for both the undistorted and the distorted lattices in the CDW state by means of a first-principles calculation. The latter also predicts the Kohn anomaly in the phonon dispersion, driving the CDW transition. The integrated intensity of the two most prominent modes scales as a characteristic power of the CDW-gap amplitude upon compressing the lattice, which provides clear evidence for the tight coupling between the CDW condensate and the vibrational modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.