Cyclic voltammetry (CV), differential capacity (DC), and charge densitymeasurements have been employed to study the benzoate (BZ) adsorption at the Au(111)electrode surface. Thermodynamic analysis of charge density (σM) data has beenperformed to describe the properties of the adsorbed benzoate ion. The Gibbsexcess Γ, Gibbs energy of adsorption ΔG, and the number of electrons flowingto the interface per adsorbed benzoate ion at a constant potential (electrosorptionvalency) and at a constant bulk concentration of the benzoate (reciprocal of theEsin—Markov coefficient) have been determined. The results demonstrate thatalthough benzoate adsorption starts at negative charge densities, it takes placepredominantly at a positively charged surface. At the most positive potentials,the surface concentration of benzoate attains a limiting value of about 7.3×10−10mol-cm−2, which is independent of the bulk benzoate concentration. This valueis consistent with packing density corresponding to a closed-packed monolayerof vertically adsorbed benzoate molecules. At negative charge densities, benzoateassumes a flat (π-bonded) surface coordination. The surface coordination ofbenzoate changes, by moving from a negatively to positively charged surface.At the negatively charged surface, the electrosorption bond is quite polar. Thepolarity of the chemisorption bond is significantly reduced due either to a chargetransfer or a screening of the charge on the anion by the charge on the metal.
Read full abstract