Open-circuit voltage deficits are limiting factors in kesterite solar cells. Addressing this issue by suppressing band tailing and nonradiative charge recombination is essential for enhancing the performance. We employ ab initio nonadiabatic molecular dynamics to elucidate the origin of band tailing and charge losses and propose a mitigation strategy. The simulations show that Cu-Zn disorder, associated with antisite defect clusters [CuZn+ZnCu], is a significant source of band tailing in kesterites, as evidenced by the much larger Urbach energy in disordered than ordered kesterites. Cu-Zn disorder gives rise to new sulfur-centered coordination polyhedra, increases structural inhomogeneity, changes electrostatic potential at sulfur centers, and shifts the S(3p) orbital energy. Differences in the S(3p)/Cu(3d) and S(3p)/Sn(5s) hybridization strengths and the S(3p) orbital energy shift reduce the band gap by 0.37 eV. Furthermore, Cu-Zn disorder enhances vibrational motion of sulfur anions and surrounding cations, increasing band gap fluctuations by 15 meV. The stronger electron-phonon interactions reduce charge carrier lifetimes and limit the kesterite solar cell efficiency. Partial substitution of Zn with Cd facilitates structural ordering and significantly suppresses band tailing, particularly in disordered systems. The improvement can be attributed to the larger atomic radius and mass of Cd, which weakens bonding around the anion, suppresses S-related vibrations within the covalent tetrahedra, and reduces nonadiabatic coupling, thereby increasing charge carrier lifetimes. The reported results establish the key influence of cation disorder on band tailing and reduced charge carrier lifetimes in kesterites and highlight cation disorder engineering as a strategy to achieve high-efficiency kesterite solar cells.
Read full abstract