Wheat gluten (WG) and peanut protein powder (PPP) mixtures were extruded at high moisture to investigate the potential application of this mixture in meat analog production. Multiple factors, including the water absorption index (WAI), water solubility index (WSI), rheological properties of the mixed raw materials, die pressure, torque and specific mechanical energy (SME) during high moisture extrusion, texture properties, color, water distribution, and water activity of extrudates were analyzed to determine the relationships among the raw material characteristics, extruder response parameters, and extrudate quality. At a WG ratio of 50%, the extrudates have the lowest hardness (2.76 kg), the highest springiness (0.95), and a fibrous degree of up to 1.75. The addition of WG caused a significant rightward shift in the relaxation time of hydrogen protons in the extrudates, representing increased water mobility and water activity. A ratio of 50:50 gave the smallest total color difference (ΔE) (about 18.12). When the added amount of WG was 50% or less, it improved the lightness and reduced the ΔE compared to >50% WG. Therefore, clarifying the relationship among raw material characteristics, extruder response parameters, and extruded product quality is helpful in the systematic understanding and regulation of the fiber textural process of binary protein meat analogs.
Read full abstract