The complexity and uncertainty of the marine environment pose significant challenges to the stability and coverage of communication links. Due to the limited coverage range of traditional onshore base stations (BSs) in marine environments, relay technology has become an essential approach to extending communication coverage. However, the rapid variations in marine wireless channels and the complexity of hydrological conditions make it extremely difficult to obtain accurate channel state information (CSI). In particular, dynamic environmental factors such as waves, tides and wind speed cause channel parameters to fluctuate significantly over time. To address these challenges, this paper proposes a cooperative communication strategy based on ships and designs a novel channel modeling method to accurately capture the characteristics of marine wireless channels. Furthermore, a deep learning-based optimization scheme is proposed, which formulates the relay selection problem as a spatiotemporal classification task. By integrating the spatial positions of candidate relays and their communication conditions, the proposed scheme enables real-time selection of the optimal relay while evaluating link connectivity probabilities under hydrological influences. Simulation results confirm that the proposed method achieves high accuracy even in rapidly changing marine environments.
Read full abstract