In recent years, deep learning has been widely used in the classification of hyperspectral images and good results have been achieved. But it is easy to ignore the edge information of the image when using the spatial features of hyperspectral images to carry out the classification experiments. In order to make full use of the advantages of convolution neural network (CNN), we extract the spatial information with the method of minimum noise fraction (MNF) and the edge information by bilateral filter. The combination of the two kinds of information not only increases the useful information but also effectively removes part of the noise. The convolution neural network is used to extract features and classify for hyperspectral images on the basis of this fused information. In addition, this paper also uses another kind of edge-filtering method to amend the final classification results for a better accuracy. The proposed method was tested on three public available data sets: the University of Pavia, the Salinas, and the Indian Pines. The competitive results indicate that our approach can realize a classification of different ground targets with a very high accuracy.
Read full abstract