Abstract

ABSTRACTDeep learning-based methods, especially deep convolutional neural network (CNN), have proven their powerfulness in hyperspectral image (HSI) classification. On the other hand, ensemble learning is a useful method for classification task. In this letter, in order to further improve the classification accuracy, the combination of CNN and random forest (RF) is proposed for HSI classification. The well-designed CNN is used as individual classifier to extract the discriminant features of HSI and RF randomly selects the extracted features and training samples to formulate a multiple classifier system. Furthermore, the learned weights of CNN are adopted to initialize other individual CNN. Experimental results with two hyperspectral data sets indicate that the proposed method provides competitive classification results compared with state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.