Accurate identification of natural and mine earthquakes in mining areas is of great significance to the construction of secondary disaster warning networks. Based on 490 records of natural and mine earthquakes in the Hegang area from 2006 to 2017, this paper compares and analyzes the ground motion characteristics of the research samples (150 earthquake records and 200 mine earthquake records) and selects the key identification parameters of dominant frequency, Pm/Tc, and Sm/Tc. The correct identification rate of the test samples (60 seismic records and 80 mine earthquake records) is 95.7%, 91.4%, and 93.6%, respectively, and the actual threat rate is 90.8%, 83.3%, and 86.3%, respectively. Finally, based on the selected key identification parameters, a “three-parameter comprehensive gradient discriminant method” is proposed. The correct identification rate and actual threat rate are 99.3% and 98.4%, respectively, which can basically accurately identify natural and mine earthquakes. It provides a certain method and theoretical support for the mining area vibration identification method, safety production, and disaster warning.
Read full abstract