Gesture recognition technology based on millimeter-wave radar can recognize and classify user gestures in non-contact scenarios. To address the complexity of data processing with multi-feature inputs in neural networks and the poor recognition performance with single-feature inputs, this paper proposes a gesture recognition algorithm based on ResNet Long Short-Term Memory with an Attention Mechanism (RLA). In the aspect of signal processing in RLA, a range–Doppler map is obtained through the extraction of the range and velocity features in the original mmWave radar signal. Regarding the network architecture in RLA, the relevant features of the residual network with channel and spatial attention modules are combined to prevent some useful information from being neglected. We introduce a residual attention mechanism to enhance the network’s focus on gesture features and avoid the impact of irrelevant features on recognition accuracy. Additionally, we use a long short-term memory network to process temporal features, ensuring high recognition accuracy even with single-feature inputs. A series of experimental results show that the algorithm proposed in this paper has higher recognition performance.
Read full abstract