This study aimed to evaluate the gelation characteristics of soybean protein hydrolysate (SPH) extracted by enzyme-assisted aqueous extraction. Specifically, the changes in gelation behaviors for heat-induced (95 °C, 20 min) SPH dispersions treated with pH (pH 3, 5, 9; pH 7 as control) and ultrasound (U; 240 W, 30 min) were investigated. The results showed that typical gel behavior with high elastic nature in the viscoelasticity and network structures were observed during the heating process, where the disulfide bond played a dominant role in the gel network formation of all the samples. Notably, the heat-induced aggregation in the SPH gels was mainly formed by the association of the basic B polypeptide in 11S and β subunit in 7S. The most superior SPH gel was formed at pH 7 when assisted by ultrasonication during the heating process. This as-synthesized gel showed a uniform filamentous structure and exhibited the more excellent textural, rheological and thermal properties than those of the samples formed under acidic and alkaline conditions. These results are of great value in revealing the gelation mechanism of SPH.
Read full abstract