Although significant advances have been made in tandem-blade technology for axial and centrifugal compressors, little attention has been paid to its application in centrifugal pumps. In this study, we propose a new tandem-blade design method for improving inner flow characteristics and overall performance of a centrifugal pump. With the SST k − ω turbulence model, three-dimensional turbulent flow fields in the centrifugal pump with tandem blades are simulated and analyzed. The effects of tandem blades on the inner flow and performance characteristics of the centrifugal pump are investigated. The predicted velocity and pressure distributions and flow behavior of the tandem-blade impeller are compared with those of a conventional single row blade impeller. It is indicated that the centrifugal tandem-blade impeller exhibits a significant advantage in terms of the uniformity of the impeller discharge flow. The tandem blades improve the jet-wake structure and uniformity of velocity and pressure distributions at the impeller outlet, and thus reduce the pressure fluctuation and hydraulic loss. Moreover, the hump phenomenon is eliminated or alleviated under low flow rate conditions, and the tandem-blade impeller has better hydraulic performance within a wider operating range as well as high reliability. This study provides a basis for the further development of the centrifugal pump with tandem blades.