A total of 2,184 pigs (337 × 1,050, PIC; initially 12.4 ± 0.17 kg) were used in a 143-d study to evaluate the effects of feeding varying analyzed calcium to phosphorus ratios (Ca:P) at two standardized total tract digestible (STTD) phosphorus to net energy ratios (STTD P:NE). Pens of pigs (26 pigs per pen) were assigned to 1 of the 6 dietary treatments in a 2 × 3 factorial with main effects of STTD P:NE and Ca:P ratio. Diets consisted of two levels of STTD P:NE; High (1.80, 1.62, 1.43, 1.25, 1.10, and 0.99 g STTD P/Mcal NE from 11 to 22, 22 to 40, 40 to 58, 58 to 81, 81 to 104, and 104 to 129 kg, respectively); or Low (75% of the High levels), and three analyzed Ca:P ratios (0.90:1, 1.30:1, and 1.75:1). There were 14 pens per treatment. Diets were corn-soybean meal-based and contained a constant phytase concentration within each dietary phase with levels decreasing throughout the trial (phases 1 through 3, 500 FTU/kg, assumed release of 0.13% STTD P; phase 4, 400 FTU/kg, assumed release of 0.11% STTD P; phase 5, 290 FTU/kg, assumed release of 0.09% STTD P; and phase 6, 210 FTU/kg, assumed release of 0.07% STTD P). Overall, there was a Ca:P × STTD P:NE interaction (P < 0.05) observed for average daily gain (ADG), feed efficiency (G:F), final body weight (BW), hot carcass weight (HCW), bone mineral density, bone mineral content, and bone-breaking strength. When feeding Low STTD P:NE levels, increasing the analyzed Ca:P ratio decreased (linear, P < 0.001) ADG final BW, HCW, and tended to worsen G:F, bone mineral density, and bone mineral content (linear, P < 0.10). However, when feeding High STTD P:NE levels, increasing the analyzed Ca:P ratio significantly improved bone mineral content and bone mineral density (linear, P < 0.05), and tended to improve ADG and final BW (linear, P < 0.10) and G:F (quadratic P < 0.10). Additionally, increasing the analyzed Ca:P ratio worsened ADG, G:F, and bone mineralization with Low STTD P:NE but had marginal impacts when adequate STTD P:NE was fed.
Read full abstract