Currently, microbial techniques have been comprehensively exploited in aquaculture effluent treatment. However, strains for bioaugmentation face many issues, such as poor adaptability, long colonization time, and unsatisfactory treatment effect. Herein, an efficient heterotrophic nitrifying-aerobic denitrifying bacterium Stutzerimonas frequens strain TF18 was isolated from the Whiteleg shrimp (Penaeus vannamei) mariculture environment. Strain TF18 exhibited strong biofilm formation and auto-aggregation characteristics, which indicated its robust adaptability and short colonization time. Remarkably, the total ammonia nitrogen, NO2--N, and NO3--N removal efficiencies of the strain were 89.21 %, 99.76 %, and 96.16 %, respectively, in the presence of sodium acetate as carbon source and carbon-nitrogen ratio of 10. Most importantly, identification of genes related to nitrogen removal, including nirS, norB, nosZ, nasA, napA, narG, and nirB, and their relative expression further demonstrated the existence of nitrate transformation pathways in strain TF18. These results provided new guidance for practical application of S. frequens strain TF18 in aquaculture effluent treatment.