The study of indigenous pine forests of evolutionary formation as endangered virgin forests is the basic for fundamental research into the processes of formation of sustainable forest communities. The aim of the study presented in the article is a comparative assessment of the structures of tree fractions of phytocenoses according to the parameters of the age series of stands and the successional position, dynamic indicators of woody waste, the influence of the pyrogenic factor, and the presence of rot damage to the stands. Age structures, numerical and linear parameters of pyrogenic factors, their impact on the infestation of trees with rot, volumetric indicators of wood waste and characteristics of natural regeneration, the mass of wood xylolysis products during its decomposition by wood-destroying fungi have been studied in pine biogeocenoses with various dynamic characteristics in the taiga zone of European Russia. Pine biogeocenoses under these conditions have structures of different ages, altered by fires of different types. Using the example of an indigenous pine forest in the Pechora-Ilychskiy Nature Reserve (middle taiga), the influence of pyrogenic effects on the formation of various types of rot and damage to trunks is shown. The volumes of woody waste are distributed according to the stages of decomposition in pine forests with different structural and dynamic characteristics; pine undergrowth – according to height gradations. An example is given of calculating the mass of wood components deposited in the stands and released during the decomposition of woody waste by wood-destroying fungi for the biogeocenosis of the Pechora-Ilychskiy Nature Reserve. The majority of indigenous pine forests in the northern territories have been affected by fires of varying intensity and types, sometimes several times during a development cycle. Pyrogenic effects have a significant on changes in the age structures of pine forests, damage to their trunks, the general infestation of forest stands by wood-destroying fungi of the biotrophic complex, the volumes of woody waste, and the formation of natural regeneration structures.
Read full abstract