Optimizing forest management requires a comprehensive understanding of how soil properties and microbial communities evolve across different plantation ages. This study examines variations in soil nutrient dynamics, enzyme activities, and bacterial communities in Schima superba Gardn. & Champ plantations of 10, 15, 27, 55, and 64 years. By analyzing soil from depths of 0–20 cm, 20–40 cm, and 40–60 cm, we identified significant age-related trends in soil characteristics. Notably, nutrient contents, including total organic carbon (TOC), total phosphorus (TP), total carbon (TC), total nitrogen (TN), and nitrate nitrogen (NO3−-N), as well as soil water content (SWC), peaked in 55-year-old mature plantations and decreased in 64-year-old over-mature plantations. Enzyme activities, such as urease, sucrase, and acid phosphatase, decreased with soil depth and exhibited notable differences across stand ages. Microbial community analysis indicated the predominance of Acidobacteria, Chloroflexi, Proteobacteria, Actinobacteria, and Verrucomicrobiota in nutrient cycling, with their relative abundances varying significantly with age and depth. Mature and over-mature plantations exhibited higher absolute abundances of functional genes related to methane metabolism, nitrogen, phosphorus, and sulfur cycling. Reduced calcium ion levels were also linked to lower gene abundance in carbon degradation, carbon fixation, nitrogen, and phosphorus cycling, while increased TOC, NH4+-N, NO3−-N, and AP correlated with higher gene abundance in methane metabolism and phosphorus cycling. Our findings suggest that long-term cultivation of Schima superba enhances soil nutrient cycling. Calcium ion was identified as a significant factor in assessing soil properties and microbial dynamics across different stand ages, suggesting that extended plantation rotations can improve soil health and nutrient cycling.
Read full abstract