Some chaotic and a series of stochastic neural firings are multimodal. Stochastic multimodal firing patterns are of special importance because they indicate a possible utility of noise. A number of previous studies confused the dynamics of chaotic and stochastic multimodal firing patterns. The confusion resulted partly from inappropriate interpretations of estimations of nonlinear time series measures. With deliberately chosen examples the present paper introduces strategies and methods of identification of stochastic firing patterns from chaotic ones. Aided by theoretical simulation we show that the stochastic multimodal firing patterns result from the effects of noise on neuronal systems near to a bifurcation between two simpler attractors, such as a point attractor and a limit cycle attractor or two limit cycle attractors. In contrast, the multimodal chaotic firing trains are generated by the dynamics of a specific strange attractor. Three systems were carefully chosen to elucidate these two mechanisms. An experimental neural pacemaker model and the Chay mathematical model were used to show the stochastic dynamics, while the deterministic Wang model was used to show the deterministic dynamics. The usage and interpretation of nonlinear time series measures were systematically tested by applying them to firing trains generated by the three systems. We successfully identified the distinct differences between stochastic and chaotic multimodal firing patterns and showed the dynamics underlying two categories of stochastic firing patterns. The first category results from the effects of noise on the neuronal system near a Hopf bifurcation. The second category results from the effects of noise on the period-adding bifurcation between two limit cycles. Although direct application of nonlinear measures to interspike interval series of these firing trains misleadingly implies chaotic properties, definition of eigen events based on more appropriate judgments of the underlying dynamics leads to accurate identifications of the stochastic properties.