Voltage and dephasing probes introduce incoherent inelastic and incoherent quasi-elastic scattering into a coherent mesoscopic conductor. We discuss in detail the concepts of voltage and dephasing probes and develop a full counting statistics approach to investigate their effect on the transport statistics. The formalism is applied to several experimentally relevant examples. A comparison of different probe models and with procedures like phase averaging over an appropriate phase distribution shows that there is a perfect equivalence between the models for the case of one single-channel probe. Interestingly, the appropriate phase distribution function is found to be uniform. A uniform distribution is provided by a chaotic cavity with a long dwell time. The dwell time of a chaotic cavity plays a role similar to the charge response time of a voltage or dephasing probe. For multi-channel or multiple probes the transport statistics of voltage and dephasing probes differs and the equivalence with phase averaging is similarly lost.
Read full abstract