The performance indicators multiservice telecommunication networks based on the architectural concept of the next Next Generation Network (NGN) and Future Networks (FN) are analyzed, using promising steganographic methods, algorithms and technologies that support a wide range cryptographic strength. As a criterion for complex indicators of the effectiveness steganographic systems, both the throughput of the covert channel, the channel utilization factor, and the probabilistic-temporal characteristics are chosen. The issues constructing covert channels, taking into account the length service packets for transmitting covert data, are considered. As a result of the study, a new approach to the construction of a mathematical model (MM) of the bandwidth steganographic systems as a communication system is proposed, which is based on the entropy approach. On the basis of the model, complex indicators effectiveness steganographic systems are studied, taking into account the parameters of the threat and stability of steganosystems. On the basis MM, the maximum throughput of a covert channel is investigated, taking into account the informative characteristics of steganographic systems. Analytical expressions have been obtained to evaluate the complex indicators steganographic systems for hiding data transmitted over communication channels when embedding and when extracting data with the necessary parameters. A numerical analysis was carried out and a graphical dependence of the maximum throughput of a covert channel on the channel utilization factor was plotted for a given system speed. Based on the results obtained, one can judge the effectiveness of modern steganographic systems in embedding and extracting hidden multimedia type data in packet-switched communication networks.
Read full abstract