The meniscal tissue is a layered material with varying properties influenced by collagen content and arrangement. Understanding the relationship between structure and properties is crucial for disease management, treatment development, and biomaterial design. The internal layer of the meniscus is softer and more deformable than the outer layers, thanks to interconnected collagen channels that guide fluid flow. To investigate these relationships, we propose an integrated approach that combines Computational Fluid Dynamics (CFD) with Image Analysis (CFD-IA). We analyze fluid flow in the internal architecture of the human meniscus across a range of inlet velocities (0.1 mm/s to 1.6 m/s) using high-resolution 3D micro-computed tomography scans. Statistical correlations are observed between architectural parameters (tortuosity, connectivity, porosity, pore size) and fluid flow parameters (Re number distribution, permeability). Some channels exhibit Re values of 1400 at an inlet velocity of 1.6 m/s, and a transition from Darcy’s regime to a non-Darcian regime occurs around an inlet velocity of 0.02 m/s. Location-dependent permeability ranges from 20-32 Darcy. Regression modelling reveals a strong correlation between fluid velocity and tortuosity at high inlet velocities, as well as with channel diameter at low inlet velocities. At higher inlet velocities, flow paths deviate more from the preferential direction, resulting in a decrease in the concentration parameter by an average of 0.4. This research provides valuable insights into the fluid flow behaviour within the meniscus and its structural influences. 3D models and image stack are available to download at https://doi.org/10.5281/zenodo.10401592. Statement of significanceThe meniscus is a highly porous soft tissue with remarkable properties of load transfer and energy absorption. We give insight on the mechanism of energy absorption from high resolution uCT scans, never presented before, and a new method which combine CFD and image. The structure is similar to a sandwich structure with a stiff outside layer and a soft internal layer made of collagen channels oriented in a preferential direction guiding the fluid flow, enabling it to accommodate deformation and dissipate energy, making it a potentially optimized damping system. We investigate architectural/ fluid flow parameters- fluid regimes relationship, which is of interest of the readers working on designing suitable biomimetic systems that can be adopted for replacement.
Read full abstract