ObjectivesTo evaluate the fabrication trueness and internal fit of hybrid abutment crowns fabricated by using additively and subtractively manufactured restorative materials. MethodsA maxillary first premolar crown with a screw access channel was designed onto a digitized master titanium base abutment. This file was used to fabricate 40 crowns additively (Crowntec (CT) and VarseoSmile Crown Plus (VS)) or subtractively (Brilliant Crios (BC) and Vita Enamic (EN)) (n = 10). Crowns were digitized with an intraoral scanner and root mean square method was used to evaluate fabrication trueness. Master abutment and the crowns when seated on the abutment were also digitized with the same intraoral scanner and triple scan method was used to evaluate internal fit. Data were analyzed either with 1-way ANOVA (surface deviations) or Kruskal-Wallis (internal fit) tests (α= 0.05). ResultsCT had the highest overall, external, and marginal surface deviations (P≤.030), whereas BC had the lowest external (P≤.001) and VS and EN had the lowest marginal surface deviations (P≤.007). BC had the highest intaglio surface deviations (P<.001). BC and EN had higher average gap values CT and VS (P≤.006); however, the differences within additively and subtractively manufactured materials were nonsignificant (P≥.858). ConclusionsOne of the tested additively manufactured resins (CT) resulted in mostly lower trueness than that of other materials. However, deviations at the intaglio and marginal surfaces were generally small and the maximum mean difference among test groups when average gap was considered was 17.4 µm. Therefore, clinical fit of hybrid abutment crowns fabricated with tested materials may be similar.
Read full abstract