Abstract
IEEE 802.11ah, also known as Wi-Fi HaLow, improves the scalability of the Internet of Things (IoT) by connecting a large number of low-power devices. IEEE 802.11ah has developed a novel feature called Restricted Access Window (RAW) that aims to address one of the main problems of the IoT: excessive channel contention in large sensor networks. All stations can access the channel from the same group when using RAW, which allows the Access Point (AP) to split stations into different groups. Existing station grouping schemes support only the homogeneous traffic scenarios, having the same data transmission interval, packet size, and Modulation and Coding Scheme (MCS). In this paper, we highlight two contributions to solving this problem. The first is a Machine Learning (ML) based model that predicts RAW configuration parameters and performance under specific network conditions. It predicts accurately and is very quick to train. Second, a technique for a channel access mechanism that uses an ML model to determine the optimal RAW station grouping configuration for dynamic traffic conditions and heterogeneous stations. We compare our ML-based model with the existing state-of-the-art solutions. We calculated the performance of our proposed model and compared it to traditional 802.11ah and the Traffic Adaptive RAW Optimization Algorithm (TAROA). The results show that our proposed model outperforms a significant improvement in terms of throughput, packet received ratio, delay, and execution time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.