A channel-and-sensing-aware channel access (CSCA) policy is proposed for multi-channel interweave cognitive radio systems, where multiple secondary users (SUs) are competing for transmission to a common access point. The proposed CSCA policy consists of two key elements: (i) a decentralized channel selection policy that allows each SU to utilize knowledge of both the spectrum occupancy information and its local channel state information to make local channel access decisions and (ii) a channel reservation policy that allows each SU to compete for use of its selected channel by emitting short reservation packets at the beginning of each frame. In the reservation period, a channel-aware splitting algorithm is utilized to resolve collision among SUs that are competing for the same channel. The splitting procedure is optimized with respect to SUs' channel selection policy and ensures that the SU with the best channel quality prevails when collision is resolved. The CSCA policy is derived with the goal of maximizing the SU's throughput subject to a constraint on the probability of collision with primary users (PUs). To satisfy the collision probability constraint, a minimum channel gain threshold is set on each channel to limit the probability that the channel is accessed by SUs. An iterative algorithm is proposed to optimize the parameters in the channel selection and reservation policies, and a low-complexity policy is devised for use in systems with large numbers of channels. The proposed CSCA policies allow SUs to exploit optimally the tradeoff between spectrum availability and channel quality.
Read full abstract