The ability of deep learning based bearing fault diagnosis methods is developing rapidly. However, it is difficult to obtain sufficient and comprehensive fault data in industrial applications, and changes in vibration signals caused by machine operating conditions can also hinder the accuracy of the model. The problem of limited data and frequent changes in operating conditions can seriously affect the effectiveness of deep learning methods. To tackle these challenges, a novel transformer model named the Differential Window Transformer (Dwin Transformer), which employs a new differential window self-attention mechanism, is presented in this paper. Meanwhile, the model introduces a hierarchical structure and a new patch merging to further improve performance. Furthermore, a new fault diagnosis model dealing with limited training data is proposed, which combines the Auxiliary Classifier Generative Adversarial Network with the Dwin Transformer(DT-ACGAN). The DT-ACGAN model can generate high-quality fake samples to facilitate training with limited data, significantly improving diagnostic capabilities. The proposed model can achieve excellent results under the dual challenges of limited data and variable working conditions by combining Dwin Transformer with GAN. The DT-ACGAN owns superior diagnostic accuracy and generalization performance under limited sample data and varying working environments when compared with other existing models. A comparative test about cross-domain ability is conducted on the Case Western Reserve University dataset and Jiang Nan University dataset. The results show that the proposed method achieves an average accuracy of 11.3% and 3.76% higher than other existing methods with limited data respectively.
Read full abstract