The hypothesis tested was that embryonic metabolism affects the water chemistry in the boundary layer. In addition, embryo crowding would further compound the metabolic effect on the water chemistry in the boundary layer. As development progressed, the magnitude of the boundary layer gradients for O(2) and pH, but not for NH4(+), increased. The presence of the egg capsule hindered the diffusion of O(2) into and H(+) and NH4(+) out of the embryo. The magnitude of the O(2), pH and NH4(+) boundary layer gradient was significantly increased when embryos were surrounded by either sham embryos or live embryos. The majority of this crowding effect on embryo boundary layers was due to changes in water flow rather than due to metabolism directly. These results clearly show that the microenvironment adjacent to the developing rainbow trout Oncorhynchus mykiss embryo becomes more stagnant as development progresses in the presence of the egg capsule and is further intensified with embryo crowding.