Microcantilevers (MCLs) have emerged as a cost-effective, label-free, and portable analytical technique for detecting chemical and biological species. The method offers notable advantages, particularly its high sensitivity, enabling the precise detection of cantilever motion at sub-nanometer levels. Furthermore, MCLs can be effectively fabricated into a multi-element sensor array, amplifying their capabilities. While many sensors rely on adsorption-induced frequency or surface stress changes of MCLs, there is a notable gap in the literature. Despite numerous review articles on MCLs, none have specifically focused on summarizing these sensors with an emphasis on reactions. Beyond their role in detecting chemical species, MCLs present a distinctive application in characterizing the morphology and mechanical properties of materials at solid-liquid or solid-gas interfaces during reaction processes. I will discuss the reaction based MCL sensors and also their potential applications in monitoring reactions.
Read full abstract