BACKGROUNDThe effects of insulin resistance on bone mineral density (BMD) are unclear.METHODSIn Study of Women's Health Across the Nation (SWAN) participants, we used multivariable regression to test average insulin resistance (homeostatic model assessment of insulin resistance, HOMA-IR) and rate of change in insulin resistance as predictors of rate of change in lumbar spine (LS) and femoral neck (FN) BMD in 3 stages: premenopause (n = 861), menopause transition (MT) (n = 571), and postmenopause (n = 693). Models controlled for age, average BW, change in BW, cigarette use, race and ethnicity, and study site.RESULTSThe relation between HOMA-IR and BMD decline was biphasic. When average log2HOMA-IR was less than 1.5, greater HOMA-IR was associated with slower BMD decline; i.e., each doubling of average HOMA-IR in premenopause was associated with a 0.0032 (P = 0.01, LS) and 0.0041 (P = 0.004, FN) g/cm2 per year slower BMD loss. When greater than or equal to 1.5, average log2HOMA-IR was not associated with BMD change. In women in whom HOMA-IR decreased in premenopause, the association between the HOMA-IR change rate and BMD change rate was positive; i.e, slower HOMA-IR decline was associated with slower BMD loss. In women in whom insulin resistance increased in premenopause, the association was negative; i.e, faster HOMA-IR rise was associated with faster BMD decline. Associations of average HOMA-IR and HOMA-IR change rate with BMD change rate were similar in postmenopause, but weaker during the MT.CONCLUSIONWhen it decreases, insulin resistance is associated with BMD preservation; when it increases, insulin resistance is associated with BMD loss.FUNDINGThe SWAN has grant support from the NIH of the Department of Health and Human Services (DHHS) through the NIH National Institute on Aging (NIA), National Institute of Nursing Research (NINR), and Office of Research on Women's Health (ORWH) (grants U01NR004061, U01AG012505, U01AG012535, U01AG012531, U01AG012539, U01AG012546, U01AG012553, U01AG012554, U01AG012495, and U19AG063720).