Although many countries have introduced strict guidelines regarding mouth and nose coverage in public to contain infection rates during the SARS-CoV-2 pandemic, more information is needed regarding the impact of wearing face masks on lactate thresholds (LT) and performance parameters during exercise. Ten healthy male and 10 healthy female subjects (age = 33.4 [10.26]y, body mass index = 23.52 [2.36]kg/m2) performed 3 incremental performance tests, wearing no mask (NM), surgical mask (SM), and filtering face piece mask class 2 (FFP2), with a cycle ergometer. The authors analyzed changes in the LT, in blood gas parameters, and in the rating of perceived exertion (RPE). Performance at LT remained unchanged in subjects wearing SM or FFP2 in comparison with NM (162.5 [50.6] vs 167.2 [58.9] vs 162.2 [58.4]W with NM, SM, and FFP2, respectively, P = .24). However, the peak performance was significantly reduced wearing FFP2 compared with NM (213.8 [71.3] vs 230.5 [77.27]W, FFP2 vs NM, respectively, P < .001). Capillary pCO2 was increased while wearing SM as well as FFP2 compared with NM (29 [3.1] vs 33.3 [4] vs 35.8 [4.9]mmHg with NM, SM, and FFP2, respectively; P < .001), and pO2 decreased under maximum performance (84 [6.7] vs 79.1 [7.5] vs 77.3 [8.2]mmHg with NM, SM, and FFP2, P < .01). Importantly, rating of perceived exertion was significantly increased by wearing FFP2 compared with NM at LT according to Mader (16.7 [2.7] vs 15.3 [1.8] FFP2 vs NM, respectively, P < .01). Wearing face masks during exercise showed no effect on LT, limited maximum performance, and induced discrete changes in capillary pCO2 and pO2 within the physiologic range while increasing RPE at LT.