The main objective of this paper project was to create a state-of-the-art face identification technique that can handle the various difficulties caused by changes in illumination, occlusions, and facial emotions. Face detection is a cornerstone of computer vision, facilitating diverse applications ranging from surveillance systems to human-computer interaction. Throughout this paper, the comprehensive exploration of advancing face detection methodologies has been undertaken, culminating in developing and evaluating a novel approach. The challenges posed by variations in facial expressions, lighting conditions, and occlusions necessitated a multifaceted solution. Our proposed method, which consists of interconnected steps, works quite well to overcome these challenges. Using deep learning architectures to increase feature extraction and discrimination was beneficial in the initial stage of fine-tuning Residual Networks (ResNet-50) to serve as the Region-based Convolutional Neural Network (Faster R-CNN) framework classifier. The process of gradually optimizing thresholds, such as batch size, learning rate, and detection threshold, involved using the Gray Wolf optimization technique (GWO). The conversion process was accelerated and improved overall detection process efficiency and accuracy using a clever fusion of machine learning and metaheuristic optimization techniques. A key component of our methodology is the careful data processing, which was necessary to ensure. The suggested method was carefully examined on a particular dataset, and the 94% training accuracy that was attained together with an identical test dataset accuracy highlights the method's resilience. These findings support the effectiveness of our approach in reducing false positives and negatives, resulting in unmatched recall and precision in the detection system. The discovery has significant significance as it can potentially improve face detection systems' performance and reliability in various real-world applications, such as human-computer interaction and surveillance. Convolutional neural networks, deep learning architectures, and metaheuristic optimization approaches were synergized to produce a new and reliable solution.
Read full abstract