Alterations in seawater chemistry posed by acidification may lead to immunological and antioxidant defence impairment in sea urchins, with differences among local populations. Here, we analyzed the effects of reduced pH on Paracentrotus lividus, with a multibiomarker approach, and the possible intraspecific variations in sea urchin responses. Two groups of animals with different ecological histories (i.e., the pattern of environmental characteristics and pressures experienced throughout the organism’s lifetime) were maintained at ambient pH and pH reduced of 0.4 units for 8 months. Changes in gonadosomatic index (GSI), immunological, and oxidative stress biomarkers were assessed in coelomic fluid, gonads, and digestive tract. Animals maintained at reduced pH showed limited impact of seawater acidification compared to the ambient pH condition. However, sea urchins from the two sites were differently influenced by the seawater pH (as shown by multivariate analyses). GSI and immunological and antioxidant status were differentially modulated between the two sexes, with generally higher values in females, but differences between sexes in relation to the pH of exposure were limited. Overall, our findings highlight that the impact of environmental stressors may differ in sea urchins from different locations. This has implications for the maintenance of P. lividus wild populations under future global change scenarios.