Solubilization isotherms for various phenols in cetylpyridinium chloride (CPC)-polyelectrolyte gel aggregates have been determined in order to compare solubilization within these aggregates with that in free micelles and to examine the effects of gel chemistry and structure on solubilization. The isotherms describing solubilization are quite similar to those found for free surfactant in solution. Solutes that are more hydrophobic give rise to larger solubilization constants with trends similar to what is seen for hydrophobic effects in adsorption from aqueous solutions onto hydrophobic solids. The solubilization constants decrease as the fraction of solute in the aggregates increases, indicating that the solutes partition into the palisade region of the aggregates. Solubilization is found to be quite insensitive to changes in gel structure (cross-linker varying from 1% to 3%) and chemistry (poly(acrylic acid) versus poly(methacrylic acid) and neutralization from 50% to 100%). However, the switch from poly(acrylic acid) to poly(methacrylic acid) did give rise to a slight decrease in magnitude of the slope of the isotherm. The most significant factors appear to be the initial concentration of surfactant in solution and the ratio of surfactant solution to gel amount. A decrease in surfactant concentration (especially combined with an increase in solution volume) gives rise to a decrease in solubilization constants.