This study aimed to investigate the effects of protopanaxadiol and protopanaxatriol ginsenosides on aconitine-induced cardiomyocyte injury and their regulatory mechanisms. The effects of ginsenosides on aconitine-induced cardiomyocyte damage were initially evaluated using H9c2 cells, and the molecular mechanisms were elucidated using molecular docking and western blotting. The changes in enzyme content, reactive oxygen species (ROS), calcium (Ca2+) concentration, and apoptosis were determined. Furthermore, an aconitine-induced cardiac injury rat model was established, the cardiac injury and serum physiological and biochemical indexes were measured, and the effects of ginsenoside were observed. The results showed that ginsenoside Rb1 significantly increased aconitine-induced cell viability, and its binding conformation with protein kinase B (AKT) protein was the most significant. In vitro and in vivo, Rb1 protects cardiomyocytes from aconitine-induced injury by regulating oxidative stress levels and maintaining Ca2+ concentration homeostasis. Moreover, Rb1 activated the PI3K/AKT pathway, downregulated Cleaved caspase-3 and Bax, and upregulated Bcl-2 expression. In conclusion, Rb1 protected H9c2 cells from aconitine-induced injury by maintaining Ca2+ homeostasis and activating the PI3K/AKT pathway to induce a cascade response of downstream proteins, thereby protecting cardiomyocytes from damage. These results suggested that ginsenoside Rb1 may be a potential cardiac protective drug.