Elucidating the spatial and temporal patterns of grassland ecosystem service value (ESV) changes under different karst geomorphic types (KGTs) is crucial for promoting regional sustainable development and enhancing human well-being. Karst ecosystems are characterized by high spatial heterogeneity. However, analyses of the drivers of spatial and temporal changes in ESV in karst grasslands at multiple scales are lacking. In this study, the South China Karst (SCK) region was selected as the focus area, the gross ecosystem product (GEP) accounting method was used to quantify the grassland ESV from 2000 to 2020, and the GeoDetector model was used to elucidate the spatial and temporal evolution of the GEP, the drivers, and their interactions in different KGTs. The results indicate the following: (1) Over the past 20 years, the grassland GEP of SCK has increased from ¥ 14,844.24 × 108 in 2000 to ¥ 17,174.90 × 108 in 2020. Among the various KGTs, the karst gorge exhibited the fastest GEP increase (24.93 %) and karst hilly depressions the slowest (6.22 %). (2) The karst grassland GEP showed a strong positive spatial correlation with significant clustering characteristics (p < 0.05). (3) There are significant differences in the factors influencing the GEP of grasslands with different KGT values, and although they are generally influenced by factors such as NPP, precipitation, and population density, anthropogenic factors are becoming increasingly important. In addition, the multifactor interaction explained GEP better than the single factor. Based on our findings, we propose targeted grassland ESV restoration approaches and management recommendations for various KGTs dominated by distinct factors. Our results provide a scientific basis for decision-making regarding karst ecosystem service enhancement and value realization.
Read full abstract