Malignant skin tumors mainly include basal cell carcinoma, squamous cell carcinoma, and malignant melanoma. There is currently observational research suggesting that changes in cathepsin (CTS) may be a factor in the development of malignant skin tumors, but no studies have yet demonstrated a causal relationship between tissue protease changes and the occurrence of malignant skin tumors. Current studies have shown that cathepsin is involved in tumor cell invasion and metastasis by regulating growth factors and cellular immune function in tumor microenvironment, decomposing extracellular matrix and basement membrane, and promoting angiogenesis. In this study, we conducted a bidirectional Mendelian-randomization study using publicly available genome-wide association study (GWAS; GWAS Catalog) data. This study applies a bidirectional multivariate Mendelian randomization (MR) approach to investigate the causal relationship between cathepsin, basal cell carcinoma, squamous cell carcinoma, and malignant melanoma. In cases where multiple cathepsins are implicated as etiological factors in certain diseases, a multivariable analysis is conducted to assess the direct and indirect causal effects of the exposure factors. In this study, we present a comprehensive MR analysis to investigate the relationship between 9 cathepsin and basal cell carcinoma, squamous cell carcinoma, and malignant melanoma. Based on our MR analysis using the largest GWAS Catalog dataset available, we are able to draw relatively reliable conclusions. In the MR study, we found that tissue protease L2 can promote skin cancer, Cathepsin O, and Cathepsin F are associated with an increased risk of basal cell carcinoma. Cathepsin H can inhibit basal cell carcinoma and malignant melanoma. In the reverse MR study, it was found that squamous cell carcinoma may cause an increase in Cathepsin O expression. In the multivariate analysis, it was found that Cathepsin H is a direct factor in reducing the occurrence of skin cancer and melanoma, with no apparent causal relationship to non-melanoma skin cancer. Cathepsin has a dual impact on skin cancer cells, and the expression of different cathepsins at the edge of skin tumors may indicate different developmental tendencies of skin cancer. Cathepsin may serve as effective biomarkers for predicting tumors.
Read full abstract