Change-point hazard models have several practical applications, including modeling processes such as cancer mortality rates and disease progression. While the inverse cumulative distribution function (CDF) method is commonly used for simulating data, we demonstrate the shortcomings of this approach when simulating data from change-point hazard distributions with more than a scale parameter. We propose an alternative method of simulating this data that takes advantage of the memoryless property of survival data and introduce the R package cpsurvsim which implements both simulation methods. The functions of cpsurvsim are discussed, demonstrated, and compared.
Read full abstract