As a result of climate change and human activities, water resources in the Xiangjiang River Basin (XRB) are subject to seasonal and regional shortages. However, previous studies have lacked assessment of the spatiotemporal evolution of water yield in the XRB at seasonal and monthly scales and quantitative analysis of the driving forces of climate change and land use on water-yield change. Quantitative evaluation of water yield in the XRB is of great significance for optimizing water-resource planning and allocation and maintaining ecological balance in the basin. In this paper, the seasonal water-yield InVEST model and modified Morris sensitivity analysis were combined to study the characteristics of monthly water yield in the XRB. Seventeen attributes were identified using the Budyko framework. The results show that: (1) the water yield of the XRB showed an increase trend from northeast to southwest from 2006 to 2020; (2) the transfer-in of unused land, grassland, woodland and farmland as well as the transfer-out of water and construction land have positive effects on the increase in water yield, and the change to construction land has the greatest impact on water yield; (3) water yield is positively correlated with NDVI and precipitation and negatively correlated with potential evapotranspiration; (4) climate change and land-use change contributed to water-yield changes of 67.08% and 32.92%, respectively.