Experiments using animal and human larynx models are often conducted without a vocal tract. While it is reasonable to assume the absence of a vocal tract has only small effects on vocal fold vibration, it is unclear how sound production and its perception will be affected. In this study, the validity of using data obtained in the absence of a vocal tract for voice perception studies was investigated. Using a two-layer self-oscillating physical model, three series of voice stimuli were created: one produced with conditions of left-right symmetric vocal fold stiffness, and two with left-right asymmetries in vocal fold body stiffness. Each series included a set of stimuli created with a physical vocal tract, and a second set created without a physical vocal tract. Stimuli were re-synthesized to equalize the mean F0 for each series and normalized for amplitude. Listeners were asked to evaluate the three series in a sort-and-rate task. Multidimensional scaling analysis will be applied to examine the perceptual interaction between the voice source and the vocal tract resonances. [Work supported by NIH.]