Objective.The transient autonomic nervous system responses induced by electroconvulsive therapy (ECT) may serve as critical indicators of treatment efficacy and potential side effects; however, their precise characteristics remains unclear. Considering that the intense stimulation of ECT may disrupt the typical antagonistic relationship between the sympathetic and parasympathetic branches, this study aims to conduct a meticulous analysis of the rapid changes in heart rate variability (HRV) and HR during ECT, with a particular focus on their synchronized interplay.Methods.Pulse interval sequences were collected from 50 sessions of bitemporal ECT administered to 27 patients diagnosed with major depressive disorder. The average HR and ultra-short term HRV indices RMSSD and SDNN, as well as the Poincaré indices SD1, SD2 and SD2/SD1, were calculated using a 10 s sliding window with a step size of 1 s. In particular, the synchronous changes between SD1, SD2, SD2/SD1 and HR were analyzed.Results.The synchronous changes of the indices showed different characteristics over time. In particular, SD1, SD2 and HR increased significantly by 41.50 ± 11.45 ms, 33.97 ± 10.98 ms and 9.68 ± 2.00 bpm respectively between 8 and 20 s, whereas they decreased significantly by 19.89 ± 9.07 ms, 17.54 ± 8.54 ms and 3.80 ± 1.33 bpm respectively between 45 and 53 s after ECT stimulus onset. SD1 and SD2 both had highly significant positive correlations with HR in the above phases.Conclusion.The results suggest that bitemporal ECT induces the sympathetic and parasympathetic co-activation during the early ictal period and brief co-inhibition approximately 45 s after stimulus. Our findings may provide new insights comprehending the mechanisms of ECT and its associated cardiovascular risks.
Read full abstract