The role of arterial baroreceptors in controlling arterial pressure (AP) variability through changes in sympathetic nerve activity was examined in conscious rats. AP and renal sympathetic nerve activity (RSNA) were measured continuously during 1-h periods in freely behaving rats that had been subjected to sinoaortic baroreceptor denervation (SAD) or a sham operation 2 wk before study (n = 10 in each group). Fast Fourier transform analysis revealed that chronic SAD did not alter high-frequency (0.75-5 Hz) respiratory-related oscillations of mean AP (MAP) and RSNA, decreased by approximately 50% spectral power of both variables in the midfrequency band (MF, 0.27-0.74 Hz) containing the so-called Mayer waves, and induced an eightfold increase in MAP power without altering RSNA power in the low-frequency band (0.005-0.27 Hz). In both groups of rats, coherence between RSNA and MAP was maximal in the MF band and was usually weak at lower frequencies. In SAD rats, the transfer function from RSNA to MAP showed the characteristics of a second-order low-pass filter containing a fixed time delay ( approximately 0.5 s). These results indicate that arterial baroreceptors are not involved in production of respiratory-related oscillations of RSNA but play a major role in the genesis of synchronous oscillations of MAP and RSNA at the frequency of Mayer waves. The weak coupling between slow fluctuations of RSNA and MAP in sham-operated and SAD rats points to the interference of noise sources unrelated to RSNA affecting MAP and of noise sources unrelated to MAP affecting RSNA.
Read full abstract