Dynamic topography refers to vertical deflections of Earth’s surface from viscous flow within the mantle. Here we investigate how past subduction history affects present dynamic topography. We assimilate two plate reconstructions into TERRA forward mantle convection models to calculate past mantle states and predict Earth’s present dynamic topography; a comparison is made with a database of observed oceanic residual topography. The two assimilated plate reconstructions ‘Earthbyte’ and ‘Tomopac’ show divergent subduction histories across an extensive deep-time interval within Pacific-Panthalassa. We find that introducing an alternative subduction history perturbs our modelled present-day dynamic topography on the same order as the choice of radial viscosity. Additional circum-Pacific intra-oceanic subduction in Tomopac consistently produces higher correlations to the geoid (more than 20% improvement). At spherical harmonic degrees 1–40, dynamic topography models with intra-oceanic subduction produce universally higher correlations with observations and improve fit by up to 37%. In northeast Asia, Tomopac models show higher correlations (0.46 versus 0.18) to observed residual topography and more accurately predict approximately 1 km of dynamic subsidence within the Philippine Sea plate. We demonstrate that regional deep-time changes in subduction history have widespread impacts on the spatial distribution and magnitude of present-day dynamic topography. Specifically, we find that local changes to plate motion histories can induce dynamic topography changes in faraway regions located thousands of kilometres away. Our results affirm that present-day residual topography observations provide a powerful, additional constraint for reconstructing ancient subduction histories.
Read full abstract