As part of a study to characterize the postural reactions that occur during voluntary gait modification, we examined the kinematic, electromyographic (EMG), and kinetic responses that occurred when cats stepped over an obstacle placed in their path. Analyses of the kinematics as each of the forelimbs stepped over the obstacle showed that changes in joint angles were most pronounced at the elbow of the first (lead) limb, and at the shoulder of the second (trailing) limb. In the hindlimbs, there was a pronounced change in the knee joint angle in both the leading and trailing limbs. Examination of the horizontal and vertical velocities of the tip of the forepaw suggests that the movements can be divided into two phases: one in which the limb is rapidly lifted above and over the obstacle, and a slower one during which the limb is carefully repositioned on the floor. On the basis of the velocity profiles, we suggest that the repositioning of the paw on the support surface is more critically controlled for the forelimb than for the hindlimb. Analysis of the changes in the ground reaction forces in the supporting limbs during these gait modifications showed that there were two major increases in vertical reaction force. One of these occurred as the two forelimbs were straddling the obstacle, the other when the two hindlimbs were straddling it. There was also a net increase in the anteroposterior force that resulted in a small increase in propulsion as the cat stepped over the obstacle. Each change in the vertical ground reaction force was paralleled by a similar change in the amplitude of the EMG recorded from the respective extensor muscles. An analysis of the vertical displacement of the scapula and of the pelvis showed that there was a slight increase in the height of the scapula in the support limb just prior to and during the swing phase of the trailing forelimb, and a more pronounced and progressive change in the height of the pelvis prior to and during the passage of both hindlimbs over the obstacle. We suggest that the increases in vertical ground reaction force raise the height of the body sufficiently to allow, respectively, passage of the trail forelimb and each of the hindlimbs over the obstacle. The results are discussed with respect to both the biomechanical changes underlying these gait modifications and the neuronal mechanisms implicated in their control.
Read full abstract